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Abstract— Ambiguity is ubiquitous in human communica-
tion. Previous approaches in Human-Robot Interaction (HRI)
have often relied on predefined interaction templates, leading
to reduced performance in realistic and open-ended scenarios.
To address these issues, we present a large-scale dataset, InViG,
for interactive visual grounding under language ambiguity. Our
dataset comprises over 520K images accompanied by open-
ended goal-oriented disambiguation dialogues, encompassing
millions of object instances and corresponding question-answer
pairs. Leveraging the InViG dataset, we conduct extensive stud-
ies and propose a set of baseline solutions for end-to-end inter-
active visual disambiguation and grounding, achieving a 45.6%
success rate during validation. To the best of our knowledge,
the InViG dataset is the first large-scale dataset for resolving
open-ended interactive visual grounding, presenting a practical
yet highly challenging benchmark for ambiguity-aware HRI.
Codes and datasets are available at: https://openivg.github.io.

I. INTRODUCTION

Robots are gradually becoming more prevalent in our
homes. Being an important part of our daily lives, it is crucial
for robots to understand visual concepts and comprehend
natural language instructions. Additionally, uncertainties and
ambiguities are inherent in our daily communication. To
effectively handle these uncertainties, robots must actively
engage in interactions to gather more information. This
process helps them develop more accurate models of the
world, leading to better decision-making. Previous research
has demonstrated the significance of interaction in reducing
failures and improving user experience [1]–[7]. However,
they often rely on predefined interaction templates, which
can lead to confusing or problematic questions and hinder
their ability to handle ambiguous language instructions in
challenging scenarios.

Recent advancements in large-scale visual-language mod-
els (VLMs) [9]–[17] have shown promise in modeling
visually-grounded HRI using end-to-end neural networks.
These models, pre-trained on large amounts of image and
text data, exhibit potential in understanding natural language
[18]–[20], grounding symbolic concepts in visual inputs [21],
[22], generating open-ended text or verbal responses [23],
[24], and even reasoning from knowledge [25]. Despite
these achievements, multi-turn HRI remains challenging,
particularly when reasoning over historical information due
to the scarcity of visually-grounded interaction data.

In this paper, we introduce the Interactive Visual Ground-
ing dataset (InViG dataset) and benchmarks for this task.
The InViG dataset is designed to train the neural networks
to interact directly with users in natural language using raw
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Fig. 1: InViG 500K dataset compared to previous works.
(a) GuessWhat?! [8] dataset, which only contains questions
with answers from “Yes”, “No”, and “N/A”; (b) INGRESS
[4], which constrains the questions to follow predefined
templates; (c) Our InViG 500K with free-form instructions,
questions, and answers, designed to facilitate open-ended
goal-oriented dialogues for human-robot disambiguation.

images and texts as inputs. For the first part, our dataset
contains over 21K human-to-human visually-grounded di-
alogs collected based on our open-source online chat pro-
gram. Furthermore, based on the InViG 21K dataset, we
train models to generate 500K human-robot disambiguation
dialogues automatically and leverage ChatGPT to enrich the
diversity of languages. Our aim is to enable the model to
learn text generation externally from ChatGPT while being
trained visually. Based on the proposed benchmark, we show
that our simple yet efficient baseline can archive a 35.6%
success rate in the interactive visual grounding task when
trained solely on InViG 21K dataset, and moreover, a 45.6%
success rate after pre-training on InViG 500K dataset with
the help of a state-of-the-art object detector [26].

Our contributions include three points:
• We present the first large-scale dataset including 520K

images specifically designed for object-oriented open-
ended interactive visual grounding and disambiguation.

• We propose a simple yet strong baseline solution to
interactive visual grounding and provide a set of promis-

https://openivg.github.io


Fig. 2: Examples of InViG 21K dataset.

ing results.
• We conduct extensive empirical studies exploring dif-

ferent formulations, training strategies, and data combi-
nations, providing comprehensive analysis to facilitate
further research in interactive visual grounding for HRI.

II. RELATED WORK

a) Disambiguation in HRI: Disambiguation is a prac-
tical yet still challenging field in HRI due to the inevitable
ambiguity and vagueness of languages. It has been shown
that with a specific task setting and a predefined interac-
tion corpus, verbal instruction generation is typically easier
than recognition [27]. Therefore, early works usually rely
on a predefined corpus to generate verbal expressions for
disambiguation to, for example, navigate with the supervision
of users [28], [29], collaborate with humans in complicated
tasks [30], or recover from failures [1], [31]. With deep vi-
sion methods, it has been demonstrated promising to generate
free-form expression with raw images as inputs [32]–[35],
and hence facilitate the open-ended interaction in open-world
scenarios [4]–[7]. Instead of following a fixed set of words,
the agents may generate object-specific descriptions to make
the interaction more natural and flexible. Yet, such methods
are still limited by a set of templates, sometimes making the
interaction confusing and even annoying.

b) Datasets for HRI: With progress in deep learning,
end-to-end approaches have drawn great attention. As is
notoriously known, data-driven approaches are always data-
intensive. Therefore, some works have contributed large-
scale datasets for HRI. Image Chat [36] is proposed to train
agents for emotional interaction. The robots are expected to
respond differently given different emotional states. Visual
Dialog [37] is designed following a similar setting of Visual
Question Answering (VQA) [38], but the answer to questions

Fig. 3: Examples of InViG 500K dataset.

in it may depend on the dialog histories. GuessWhat?! [8]
is inspired by the well-known interaction game that involves
two persons at the same time, one for the Guesser and the
other for the Oracle. The Guesser will be guessing the target
of the Oracle by iteratively asking judgment questions, and
the Oracle can only answer ‘Yes’ or ‘No’ to complete the
game. Following these datasets, end-to-end approaches have
shown great potential for language-based interaction [39]–
[41]. More impressively, by training the interaction models
end-to-end simply using supervised learning, it even learns to
track the dialogue states during interaction [39]. These results
show promise to achieve natural HRI through data. More
datasets can be related to visual-language interaction like
VQA [38], [42]–[46], Visual Reasoning [47], Visual Ground-
ing [48], and Image Captioning [49]–[51]. Nevertheless, they
can hardly be applied to data-driven HRI directly since they
only include single-turn interactions. On the other hand, the
most related work GuessWhat?! [8] simplified the problem
too much by restricting the answers to be chosen from “Yes”
and “No”, and hence is limited in natural interactions. In this
paper, we contribute a dataset for interactive visual grounding
to reduce the gap between current multi-modal models and
practical application scenarios in robotics.

c) Deep Learning Models for HRI: Recently, large-
scale language models (LLMs) [52]–[55] are shocking the
world with their surprisingly emergent zero-shot and few-
shot learning abilities [56]. By simply training the model
with intensive text data, such models unite most natural
language tasks by text generation. Though powerful and
impressive in natural language tasks, current LLMs still
lack efficiency in multi-modal scenes, especially ones that
involve the alignment of visual and linguistic concepts. The
most recent works have tried to either assemble or finetune



TABLE I: InViG Dataset Compared to Other Related Datasets

#Image #Dialogue #Object #Class #Question #Token Object-Oriented? Open-Ended? Interactive? Ambiguity?

VQA 2.0 123K - - - 658K 13M
RefCOCO 20K - 197K 80 - 530K ✓ ✓
Image Chat 202K 202K - - 401K 4.7M ✓ ✓
Visual Dialog 125K 125K - - 1.3M 11M ✓ ✓
GuessWhat?! 67K 155K 1.3M 80 822K 5.8M ✓ ✓ ✓

InViG 526K 526K 43M >500 1.9M 80M ✓ ✓ ✓ ✓

from LLMs to keep the emergent abilities while learning to
align visual and linguistic embeddings [17], [57], [58]. They,
nevertheless, are still not capable enough to be deployed in
specific task settings like interactive visual grounding due to
the lack of data.

III. INVIG DATASET

A. Overview

We start with manually annotated interactive dialog col-
lection using crowd-sourcing. In this phase, we sample and
filter 21K images from OpemImages Dataset [59], which
consists of massive images with object instances and class-
level annotations. Based on the sampled images, we recruit
annotators to label each image with one or more targets and
human-to-human dialogues.

With 21K labeled data, we further develop an annotation
system to automatically generate HRI data, based on which
we further generate 500K goal-oriented disambiguation dia-
logues in extremely low costs. Therefore, in total, our InViG
dataset contains more than 520K dialogues for interactive
visual grounding.

We demonstrate the comparison between InViG Dataset
and previous works in Table I. In summary, InViG dataset is
proposed to solve the problem of object-oriented open-ended
interactive ambiguity in HRI, which widely appears in daily
communications between humans. Therefore, differentiated
from all previous works, InViG dataset contains extensive
interactive disambiguation data to facilitate the development
of HRI systems.

B. Data Collection

We hope our dataset contains images commonly seen in
daily life and vary in ambiguity. To do so, we sample images
from OpenImages dataset [59] with a two-stage filter.

In the first stage, we remove those images with inappro-
priate contents, like dense insects and animals like spiders,
ladybugs, scorpions, and marine invertebrates. Also, classes
that are parts of one another, like human body, human ear,
and human teeth, are also filtered out. Besides, we also filter
out most images with low ambiguity, which is defined as the
maximum number of objects belonging to the same class.

In the second stage, we propose a Bayesian Filter on
the object classes to further identify if an image is suitable
for our task. To be specific, we first randomly sample a
small image set and manually classify these images by their
suitability into a positive set Ipos and a negative set Ineg .
For every image I that contains class c1, . . . , cn, we assume

that the appearance of each class ci (1 ≤ i ≤ n) in each
image is independent of each other. Therefore, we have

p(I|c1, . . . , cn) ∝
n∏

i=1

p(ci|I) (1)

We approximate p(ci|I ∈ Ipos) and p(ci|I ∈ Ineg) by simply
counting the frequency that each object class appears in
positive images and negative images, respectively. Then, we
can apply Eq. 1 to estimate the probability of each image
being positive. Finally, we sort the scores and keep only those
images with a positive probability over 0.5, which means
they probably portray a good InViG scenario.

Intuitively, the first stage cleans a large portion of unde-
sired images efficiently, while the second stage refines the
results by filtering out images that cannot be handled simply
using heuristics.

C. Data Annotation

To collect interaction data, we developed an online inter-
active website that enables image-based chat between two
users. To start the interaction, each user will be paired
randomly with a partner. During the interaction, each user
can choose to skip the current image or reset all labeled data
if unexpected situations are encountered. We force the “User”
who plays the role of the real user to start the conversation
by telling the “Agent” what he/she is interested in. Due to
ambiguity in languages, the “Agent” needs to ask questions to
disambiguate. We force two annotators to take turn-talking.
Hence, whether a conversation should stop is totally up to
the “Agent”. That is if the “Agent” gets enough information,
and finally, locates the targets, it will stop the conversation
actively. During labeling the targets, the “Agent” is forced to
upload the results first, after which the results will be sent
to the “User” for checking.

In total, we spent one month recruiting 230 annotators
to label the disambiguation dialogues. Each annotator is
required to participate in the label of at most 300 images,
considering the diversity of languages with different back-
grounds. To streamline the annotation process and ensure
its effectiveness, we utilize specially developed image-based
chat tools to collect all the labels. Finally, we collected
more than 21K images and the corresponding targets with
disambiguation dialogues. We have shown some examples
of the dataset together with their labels in Fig. 2.

D. From 21K to 520K

Due to the time and labor-intensive nature of manual
annotation, we developed an automatic annotation system



(a) Dialog rounds (b) Sentence lengths

Fig. 4: Statistics of dialogues in InViG 21K dataset.

Fig. 5: Word clouds of InViG 21K dataset.

to generate disambiguation dialogues only given unlabeled
images. It enables us to efficiently collect a large-scale
dataset with diverse visual and linguistic labels. By doing
so, we collected 500K automatically images and generated
dialogues, with diversified visual and linguistic labels.

In this phase, we choose the SAM dataset [60] as the data
source considering the diversity of visual inputs. Besides, it
also contains many more object segments in each image than
OpenImages [59], making it too hard for human annotators
yet suitable for automatic data generation and collection.
The 500K images are randomly sampled from the Segment
Anything dataset. However, we found that there are around
60% objects only occupying less than 5% area in the image,
making it too small to be appropriate for our task. Therefore,
we assign the weights for each object according to their
occupied areas, meaning that larger objects will be more
likely selected.

To label disambiguation dialogues automatically, we train
models to interact with each other using the InViG 21K
dataset together with other related public datasets [8], [37],
[48], [50], [51], [61]–[64]. Our models follow the encoder-
decoder transformer architectures for visual grounding and
text generation [16], [65], [66]. Concretely, we first train
an object captioner to generate a query expression for the
selected target, which is the start of each dialogue. Based
on the generated query, a well-trained questioner and oracle
will speak alternatively to generate the dialogue until the
questioner stops talking. Finally, a visual grounding model
will output the bounding box according to the dialogue and
the input image. To ensure the diversity of language, we
then use ChatGPT [67] to rephrase the generated dialogues
by our trained models. Concretely, we prompt ChatGPT to
consider the diversity of personality, vocation, and language
proficiency during the dialogue augmentation, so that the
models can adapt to different kinds of users. Besides, we also
set restrictions in the prompt, to make the output precise and
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Fig. 6: Statistics of dialogues in InViG 500K dataset.

Fig. 7: Word clouds of InViG 500K dataset.

concise. Some examples are shown in Fig. 3. We can see that
the generated dialogues contain more diversified expressions
compared to the manually labeled ones as shown in Fig. 2.

E. Data Statistics and Analysis

We have demonstrated the statistics of objects and dia-
logues in InViG dataset.

a) Images and Objects: As shown in Table I, InViG
dataset totally contains more than 520K images with 43M
segmented object instances. Each image is labeled with a
multi-turn goal-oriented disambiguation dialogue. Among all
the data, we have question-answer pairs, more than 4.4M
sentences, and around 80M tokens. To the best of our
knowledge, this is the first large-scale dataset for the task of
open-ended interactive visual grounding and disambiguation.

b) Human-to-Human Dialogues: InViG includes 21K
human-to-human dialogues from crowd-sourcing based on
311K object instances belonging to 510 different categories.
The distribution of dialogue rounds and sentence lengths
are shown in Fig. 4. We can see that more than 99%
dialogues end in 6 interaction rounds, and simultaneously,
more than 80% sentences include less than 10 words. We also
demonstrate the word clouds of the dialogues in Fig. 5. The
first column shows the overall word clouds for questions and
answers, and the following ones illustrate word distributions
by turns. We can see that people used to ask questions like
“which one” in the first turn, and then move on to confirming
questions. The end signals (e.g. “thank”) usually appear
after the 3rd turn of dialogues. Moreover, interestingly, the
ratio of spatial words decreases gradually with an increasing
number of dialog turns, meaning that spatial relationships
are preferred to answer the question “which one”. These
observations accord with our experience, which might be
considered in the design of interaction models.

c) Automaticlly Generated Dialogues: We illustrate the
distribution of automatically generated dialogues in Fig. 6.



We can see that after the rephrase of ChatGPT, dialogues in
InViG 500K are much more complex than human utterances.
The maximum number of dialogue turns increases to more
than 20 and the maximum length of each sentence is larger
than 100 words. We also visualize the word clouds for InViG
500K in Fig. 7. Similar to InViG 21K, spatial relationships
are used as answers mostly in the 1st turn while the confirm-
ing answers like “Yes” mostly appear after the 2nd dialogue
turn.

IV. BASELINES AND EXPERIMENTAL RESULTS

Based on the collected human-to-human dialogues, we
conduct a series of downstream tasks to set up a benchmark
for interactive visual grounding. We aim to answer the
following questions in this section:

(1) What tasks can we do by taking advantage of InViG
dataset? (Sect. IV-A)

(2) How can InViG 21K and InViG 500K be used to
perform better in disambiguation tasks? (Sect. IV-D)

(3) What are the pros and cons of state-of-the-art visual-
language models for disambiguation tasks? (Sect. IV-D)

A. Tasks

We design four downstream tasks based on our InViG
dataset: a) Multi-Turn Visual Question Answering; b) Visual
Question Generation; c) Multi-Turn Visual Grounding; d)
Interactive Visual Grounding.

a) Multi-turn Visual Question-Answering (M-VQA):
requires the model to answer open-ended questions based
on image observations and dialogue history, hence, the inputs
are an image I , an initial referring expression e, and a group
of questions and answers {(qi, ai)}T−1

i=1 , and the question to
be answered qT . The output is a sequence of words that form
an answer aT .

b) Multi-turn Visual Question Generation (M-VQG):
requires the model to generate a question for clarification in
the next turn. Therefore, the input includes an image I , an
initial referring expression e, and a group of questions and
answers {(qi, ai)}Ti=1. The output should be a sequence of
words that form a question of the next turn.

c) Multi-turn Visual Grounding (M-VG): is defined as
grounding the target object x∗ = (xmin, ymin, xmax, ymax)
given an image I , an initial referring expression e, and
a dialogue history {(qi, ai)}Ti=1 that contains the complete
information about the targets.

d) Interactive Visual Grounding (I-VG): is a new task
that involves both active interaction and interactive visual
grounding. In this setting, the ground truth dialogue history
is not available. Instead, the agent needs to actively interact
with humans to collect the necessary information for the
final grounding task. In previous works, humans are usually
involved in evaluating the performance of a model [4], which
is time-consuming and also expensive to evaluate a large
dataset like our InViG. Instead, we introduce an Oracle
by following [8] in this paper to conduct the automatic
evaluation. The Oracle follows the same form as the multi-
turn visual question-answering model.

Formally, the input in this task contains an image I and an
initial referring expression e. The model needs to generate a
set of questions {qi}Ti=1 to finally ground the target object
x∗ = (xmin, ymin, xmax, ymax). Meanwhile, the Oracle
model should play the role of users, and give answers
{ai}Ti=1 to the corresponding questions. High performance
in this task requires seamless coordination of all the above
three tasks.

B. Metrics

a) M-VQA and M-VQG: Since we do not restrict the
question and answer space, we introduce two sets of metrics
for the evaluation of these two tasks. Firstly, we follow
previous works in natural language processing and measure
the similarity between the predictions and the ground truths.
In detail, we use BLEU-1 and BLEU-4 [68], CIDEr [69],
METEOR [70], and ROUGE [71] as the metrics for text sim-
ilarity. Nevertheless, these metrics assume that the generated
text should be unique, which violates the intuition of open-
ended dialogues. Hence, we also introduce the retrieval-based
multi-choice metrics: Recall@k and GT Rank. To do so, we
assign 30 candidates for each question and answer. To make
the choices challenging, the candidates are sampled from
the dialogues of the top 30 similar images using CLIP [15]
embeddings. The model is required to rank all candidates
together with the ground truth. Recall@k measures the
fraction of the ground truth being in top-k candidates. GT
Rank measures the mean rank of the ground truth among all
candidates.

b) M-VG and I-VG: We follow the traditional settings
[48] and use accuracy to evaluate the performance of In-
teractive Visual Grounding. Concretely, for each model, we
measure the fraction of predicted bounding boxes that have
the Interaction of Union (IoU) no smaller than m, given the
dialog histories, where m ∈ {0.1, 0.2, ..., 1.0}.

C. Baselines

We implement a simple yet efficient baseline algorithm
named InViG-Base, based on the state-of-the-art vision-
language foundation model X-VLM [65]. It includes three
parts: an Oracle model which can answer open-ended ques-
tions, a Questioner model that interacts with the Oracle to
collect information, and a Guesser model to guess targets
with the input of ground truth bounding boxes of all objects
or the ones detected using Detic [26]. The overall architecture
is shown in Fig. 8. To validate different formulations for
multi-turn dialogues, we also implement a multi-turn variant
called InViG-Base-MT, following previous work [9]. It re-
formulates the Agent in a multi-turn mode. In each turn,
the model takes as inputs the belief of each object from the
last turn as well as the current textual and visual embed-
dings. The third one is similar to InViG-Base, which is also
demonstrated in Fig. 8. In this version, the visual grounding
head is replaced with a bounding box regressor rather than
a classifier following the formulation from [18], [65]. It gets
rid of object proposals and directly outputs the location of



TABLE II: M-VQA Performance

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr R@1 R@5 Rank

XVLM 21K 24.6 15.8 10.4 7.2 16.0 28.3 72.8 49.8 73.9 5.0
InViG-Base 21K 26.7 17.8 12.1 8.6 16.9 30.2 81.9 50.9 75.0 4.8
InViG-Base 500K 23.2 14.5 9.5 6.7 15.4 22.8 52.3 39.7 61.5 7.1
InViG-Base 500+21K 27.7 19.3 14.0 10.5 17.8 33.4 96.2 49.9 74.3 4.8

TABLE III: M-VQG Performance

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr R@1 R@5 Rank

InViG-Base-MT 21K 31.0 24.9 21.1 18.3 16.2 48.2 117.4 38.0 63.6 5.8
InViG-Base-BBOX 21K 34.2 27.1 22.8 19.5 17.3 49.2 120.5 49.9 68.2 5.4
InViG-Base 21K 34.7 27.6 23.1 19.9 17.4 49.7 122.2 49.9 67.9 5.4
InViG-Base 500K 24.0 15.8 10.9 7.9 13.9 38.7 36.8 33.1 58.1 6.9
InViG-Base 500+21K 34.2 27.7 23.5 20.4 17.6 50.3 128.2 52.6 74.7 4.5

Fig. 8: Networks of baseline methods. Left: InViG-Base.
Right: InViG-Base BBOX. Note that InViG-Base BBOX is
conditioned on image embeddings and does not rely on an
external bounding box detector.

the target. For M-VQA, we also compare to the original X-
VLM with only the question to be asked as language inputs,
which is trained on our InViG 21K dataset (XVLM 21K).

D. Results

We do experiments for all four tasks introduced in Sect.
IV-A on InViG 21K and 500K datasets.

a) Pre-training improves performance: For the text
generation tasks, specifically M-VQA and M-VQG (see
Table II and Table III), training on a large amount of
noisy data (InViG-Base 500K) yields inferior performance
compared to training on a smaller dataset with less clean
data (InViG-Base 21K). However, pre-training on a large
amount of noisy data still leads to a significant improvement
in performance. Notably, the pre-trained model InViG-Base
500+21K outperforms the model without pre-training across
most metrics. For M-VG and I-VG (Fig. 9a), we also have
similar conclusions.

b) Dialog history is crucial: In the case of M-VG, as
shown in Fig. 9b, Turn-m, m ∈ {1, 2, 3}, means grounding
performance without the last m dialogue turns. We can see
that the grounding performance drops consistently with less
information. Besides, dialog history also helps M-VQA. As
shown in Table II, in the case of M-VQA, our InViG-Base
consistently outperforms the original X-VLM, albeit by a
small margin. This observation highlights two key findings:
1) Dialog histories contribute to enhanced performance in
M-VQA, and 2) Most questions can be reasonably answered
without relying on dialog history.

(a) Left: M-VG. Right: I-VG (b)

Fig. 9: Multi-Turn Visual Grounding (M-VG) and Interactive
Visual Grounding (I-VG) performance.

c) Target classification performs stably: From Fig.
9a, we can conclude that when considering different vi-
sual grounding approaches, direct bounding box prediction
demonstrates superior performance at lower IoU thresholds,
but its performance declines significantly as the thresh-
old increases. In contrast, the performance of InViG-Base
based on the target classification is more stable. We can
see that with ground truth object bounding boxes, InViG-
Base 500+21K still achieves more than 60% success rate
with ground truth dialogues. When paired with Detic, its
performance is stable when the threshold increases. Besides,
InViG-Base-MT exhibits the poorest performance, suggesting
that the multi-turn dialogue formulation is not optimal for
interactive visual grounding tasks.

V. CONCLUSIONS

In this paper, we present InViG dataset, the first large-
scale dataset including more than 520K images and dialogues
for interactive visual grounding, to resolve the challenge
of language ambiguity in HRI. We have conducted exten-
sive and comprehensive experiments and set up a suite of
baseline solutions to resolve HRI ambiguity. Our results
demonstrate that based on the InViG dataset, the robot can
successfully disambiguate interaction with a success rate of
45.6% in challenging and realistic scenarios in validation.
Future works include developing an automatic data-cleaning
process for high-quality data collection, integration into more
interactive robot systems, and validation of performance on
more downstream interactive robot tasks.
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